
D. Brown, M. Herman, S. Hoblit,  
G.P.A. Nobre, E. McCutchan (BNL) 
Jing Qian, Zhigang GE, Tingjin LIU, 

Xichao Ruan, Zuying ZHOU (CNDC) 
V. Pronyaev (IPPE) 

S. Tagesen, H. Vonach (IRK, Vienna) 
R. Capote, A. Trkov (IAEA) 

A. Plompen (IRMM) 
G. Zerovnik (JSI)  

56Fe Evaluation in the Fast 
Neutron Region



Where we  are?

! GForge CIELO-Iron project set up and contains lot of information 
• previous evaluations 
• new resonance region evaluation by L. Leal (ORNL) 
• EMPIRE inputs and calculations (future new evaluation) (NNDC) 
• some historic documents and recent publications/presentations 
• selection of relevant integral experiments (G. Zerovnik, JSI) 

! Empire updated to natively produce CN angular distributions 
(elastic and inelastic) 

! New non-linear fitting (differential and/or integral data) in 
EMPIRE 

! Experimental data selected (CNDC) 
! IRK-IPPE evaluation recovered (Pronyaev, Tagessen) 
! Guided by Zolotarev IRDF-2002 file for 56Fe(n,p) 
! Preliminary calculations adjusted to differential data look good!
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Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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GForge CIELO-Iron project
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GForge CIELO-Iron - evaluation docs

6



7

GForge CIELO-Iron evaluation
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CN angular distributions in EMPIRE
! Previously CN angular distr. 

were calculated by rescaling 
ECIS results - not fully 
consistent and cumbersome
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! Native EMPIRE calculations 
required replacing Tl with Tlj  

! New HRTW subroutine was 
totally recoded in F90

ECIS
EMPIRE

56Fe(n,el) Ein=709 keV



Comparison with ECIS
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ECIS
EMPIRE

56Fe(n,el) 
E=37.4 keV



Comparison with ECIS

11

ECIS
EMPIRE

56Fe(n,el)"
E=0.709 MeV



Comparison with ECIS
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ECIS
EMPIRE

56Fe(n,el) 
E=1.04 MeV



Comparison with ECIS
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ECIS
EMPIRE

56Fe(n,el) 
E=2 MeV
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New non-linear fitting in EMPIRE by Sam 
Hoblit

! Uses surrogate surface instead 
of actual EMPIRE obtained 
from sensitivity calculations 

! CERN code MINUIT to 
minimize  Chi**2 through 
variation of model parameters 

! Experimental data scaled with 
a factor (with penalty!) to 
account for systematic errors 
BONUS - no PPP 

! Differential, integral, and 
differential+integral data 
possible
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! Great flexibility through line 
command control 
! ex- in-cluding experiments 
! ex- in-cluding reactions 
! ex- in-cluding parameters 
! freezing parameters 
! freezing scaling factors 
! plotting fits and covariances 

"

Unfortunately Sam got sick 
before he could use it.
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There is WAY too much data to get 
through.  We needed “a little help from 
our friends…”

! 56Fe has 447 EXFOR 
sets with points in the 
fast region  

! natFe (91.72% 56Fe) 
has 838 EXFOR sets 
with points in the Fast 
Region
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Our CNDC colleagues generated an 
authoritative review of data & previous 
evaluations
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From this careful review, our friends at 
the CNDC recommend we build on the 
work of these fellows; we agree with their 
recommendation
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Siegfried 
Tagesen

Herbert 
Vonach

Vladimir 
Pronyaev



EFF-3.1 contains most complete 
review of experimental data in the 
Fast region
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Evaluations of the fast neutron cross sections 
of 52Cr and 56Fe including 

complete covariance information 
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Uncertainty Estimates for the Fast Neutron Cross-Sections of the European 
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Cross-Sections of these Isotopes from the existing experimental data base 
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Summary of (n,2n) data
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Table 11: Experimental data base for the evaluation of the cross section for the 56Fefn.2n?SFe reaction. 
1= 

EXFOR First Author Energy range No. of Comments Corrections Uncertainties (%) X2 
Entry and Year We”) data applied Statistical Systematic per degree 
No. points (uncorrel.) (carrel.) of frtiedom 

11097 Ashby 58 14.1 1 neutron detection 
“atFc 

20091 Wenusch 62 14.8 1 
EE::hed S6Fe 

20721 Qaim 76 14.7 1 activ., 
enriched S6Fe 

12936 Auchampaugh 80 14.7-20.0 6 neutron detection, 
“atFe 

20416.044 F~?haut 80A 11.88-14.76 7 neutron det. 
“atFe 

20416.003 Frthaut 8OB 11.88-14.76 7 neutron detection 
enriched 56Fe 

13132 Greenwood 88 14.8 1 activ., 
enriched 56Fe 

1) 
normaliition 
by a factor 0.815 
recent reference 
cross section 

2) 

renormaliition 
by a factor 1.077 

7.8(total) 0.03 

20.5 (total) 0.74 

9.1 (total) ~1.17 

4.3-9.5 4 0.31 

2.7-17 6.2 

I 

1.503) 
2.6-9.6 5.1 

7.7 (total) 0.72 

correct. for minor Fe isotopes 
correct. for minor Fe isotopes; correc. for energy-dependent efficiency of the detector (see text) 
because of strong correlations the results of both experiments were processed as one single data set. 



The EFF-3.1 evaluation was 
a Frankenevaluation, but 
with good parts
! Constraint LSQR fit using GLUCS of  

all data for (n,tot), (n,el), (n,γ), (n,inel), (n,n1’)-
(n,n40’), (n,2n), (n,α), (n,p) 
• Best fit cross sections 
• Cross-reaction covariance 
• Careful assessment of med. & long range correlations 

! Update for JEFF-3.0 included (n,tot) data of 
Weigmann  

! Everything else is model based, and kind of 
wonky 

! JEFF-3.2 based on JEFF-3.0, but it was 
adjusted ;(
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Only EFF-3.1 and JEFF-3.0 contain 
original evaluation

EFF-3.1
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JEFF-3.0

JEFF-3.2 
(adjusted)

ROSFOND2010 
(no covariance)

ENDF/B-V

ENDF/B-VI

ENDF/B-VII

JENDL-3.3
CENDL

JENDL-4



Where we  are?

! GForge CIELO-Iron project set up and contains lot of information 
• previous evaluations 
• new resonance region evaluation by L. Leal (ORNL) 
• EMPIRE inputs and calculations (future new evaluation) (NNDC) 
• some historic documents and recent publications/presentations 
• selection of relevant integral experiments (G. Zerovnik, JSI) 

! Empire updated to natively produce CN angular distributions 
(elastic and inelastic) 

! New non-linear fitting (differential and/or integral data) in 
EMPIRE 

! Experimental data selected (CNDC) 
! IRK-IPPE evaluation recovered (Pronyaev, Tagessen) 
! Guided by Zolotarev dosimetry file for 56Fe(n,p) 
! Preliminary calculations adjusted to differential data look good!
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56Fe(n,p)  
dosimetry reaction
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                     Fig. 4a   Evaluated excitation function for the reaction Fe-56(n,p)Mn-56 in the energy range 3 – 12 MeV in 
                                   a comparison with IRDF-90v.2 , JENDL/D-99 and experimental data. 
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                    Fig. 4b   Evaluated excitation function for the reaction Fe-56(n,p)Mn-56 in the energy range 12 – 15 MeV in 
                                  a comparison with IRDF-90v.2 , JENDL/D-99 and experimental data. 
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RRDF-2010 is the most recent 
evaluation (part of IRDFF-2014) 
Detailed selection of experiments, 
covariance data. 



Where we  are?

! GForge CIELO-Iron project set up and contains lot of information 
• previous evaluations 
• new resonance region evaluation by L. Leal (ORNL) 
• EMPIRE inputs and calculations (future new evaluation) (NNDC) 
• some historic documents and recent publications/presentations 
• selection of relevant integral experiments (G. Zerovnik, JSI) 

! Empire updated to natively produce CN angular distributions 
(elastic and inelastic) 

! New non-linear fitting (differential and/or integral data) in 
EMPIRE 

! Experimental data selected (CNDC) 
! IRK-IPPE evaluation recovered (Pronyaev, Tagessen) 
! Guided by Zolotarev IRDF-2002 file for 56Fe(n,p) 
! Preliminary calculations adjusted to differential data look good!
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Summary of EMPIRE input

! CC for incident/outgoing channels + DWBA 
! Soukhovitskii and Capote dispersive OMP 
! Microscopic HFB level densities 
! Width fluctuation correction (HRTW) up to 8 MeV 
! Default gamma-ray strength function (Plujko MLO1) 
! Multistep Direct/Compound above 3 MeV 
! Compressional form factor for the l = 0 transfer 
! Exciton model (PCROSS) free path for PE set to 2.5 
! Energy-dependent reduction of (n,tot) up to 3 MeV 
! Fitted HFB pairing-like and pseudo-a parameters for 56Mn 
! Minor fit of 56Fe level density
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Total cross section
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!Too much exp. data"
!Too much spread (even in fast region)"
!Hard to determine quality of our calculation



Total cross section
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! Smoothed ENDF/B VII.1 
! Fitted total below 3 MeV 
! For higher energy, we are in good agreement with previous 

evaluations



Elastic cross section
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Fast region:"
!Below (smoothed) ENDF"
!Agree with exp. data"
!Possible improvement of "
   current evaluation



Inelastic cross sections
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56Fe(n,p) comparison with IRDFF 
(RRDF-2010) - still some work to do…
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Double-differential cross sections
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fitted"
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Double-differential cross sections
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Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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The spooky mystery level

37

Lowest 3- level is at 3076.2 keV!
• ENSDF reports it 

• It is in RIPL-3 

• It is the 6th excited state (MT=56) 

Does it exist?? 

• Note 2 other levels 50 keV higher 



Origin of level in ENSDF

57 3090 L=1
56 3070 L=(3)

54 3100 (50) L=4
56 3100 L=3

60 3070 (30)
Ni(π Not observed
55 3076.2 (4)

Appears to be observed in 7 different reactions

Only level seen  
in just one  
resonance

3-

2+

4+



Fotiades et al., thoroughly refute it
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(n,n’γ) 
experiment

Non-observation of 2  
depopulating 

transitions

The true ghost-buster
• Repeat (p, γ) experiment with γ- γ coincidences 
• Easy experiment for facility with small tandem



Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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56Fe(n,p) - level-density models
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56Fe(n,p) sensitivity to 56Mn lev. den.
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56Fe(n,p) sensitivity to 56Fe lev. den.
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! Also incredibly sensitive to 56Fe level density. 
! Center of experimental LD leads to poor (n,p). 
! Tweaks on LD can significantly change (n,p).



Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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Must merge onto L. Leal’s 
56Fe RRR
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7 Managed by UT-Battelle
for the Department of Energy

Comparison of SAMMY predictions of Total and inelastic data.

It is 
beautiful, !
• LRF=7, "
• extends to 

2 MeV"
• Includes 

(n,tot), 
(n,el), 
(n,γ), 
(n,n1’)"

• If not all 
RRR exp. 
data, at 
least most 
of it"

• Fitted 
angular 
dists. too



To match onto Leal’s RRR, must smooth 
cross sections

! OMP & Hauser-Feshbach theory only tell us about average 
cross sections 

! Preferred averaging is with Lorenzian: 
"

"

"

! so that averaged have nice mathematical properties:
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Lorentzian: L(E,E0) =
1
⇡

I
(E0 � E)2 + I2

Gaussian: G(E,E0) =
1

I
p
2⇡

exp


� (E � E0)2

2I2

�

Window: W (E,E0) =

⇢
1/I |E � E0|  I

0 otherwise

TABLE I. Smoothing profiles considered in this work.

III. INSENSITIVITY TO SMOOTHING
PROFILE

We now use the results from the previous section to
smooth cross sections. We consider the three separate
smoothing profiles in Table I. All of these profiles are
normalized over the entire real axis. Only positive valued
of energy are physically relevant. Furthermore, the data
tables we intend to average only span a limited range of
energies. However, all of the smoothing profiles are very
narrow so truncating the averaging integrals over a finite
range much larger than each smoothing profiles intrin-
sic length scale I is a reasonable approximation. Fig. 1
shows the smoothed capture cross section for 56Fe show-
ing the good agreement between smoothing with Gaus-
sian and Lorenzian profiles.

We also applied the smoothing to the total and elas-
tic cross sections. Here the two smoothing profiles gave
comparable results. In Fig. 2 we see the elastic cross sec-
tion in the range 500 keV to 1.8 MeV. We first note that
the ENDF file does not provide covariance for the cross
section above 900 keV. The total cross section is shown
in 3. Here the uncertainties are given over the entire
cross section and the smoothed results are in excellent
agreement.

Due to an undiagnosed bug in our averaging code, the
window smoothing function could not be used. Since we
had no intention of ever using it in practice, we have not
expended the e↵ort to get this piece of code functioning.

IV. SMOOTHING CROSS SECTIONS FROM
CIELO STARTER FILE

The CIELO starter file from Luiz Leal includes a re-
solved resonance region given using the LRF=7 option,
that is, using the R-matrix limited format. It includes
resonances for (n, �), (n,,el), (n,tot) and (n, n0

1) up to 2
MeV. Given that there are 20 resonances within each 200
keV window in the region from 500 keV-2 MeV, we think
it is reasonable to shrink the averaging width to I = 100
keV. This will allow us to approach the discontinuity in
the capture cross section as well as the thresholds in the
inelastic cross sections.

V. OVERVIEW OF THE GEEL INELASTIC
SCATTERING DATA

We now compare the Geel results to the CIELO starter
file. Figs 4–6 show the total inelastic cross section.
Clearly the ENDF file compares favorably to the Geel
data. The ENDF file also appears to correctly represent
the pre-equilibrium contribution to the cross section as
we see from agreement with other data at the 14 MeV
point. Figs. 7–8 compare the cross sections for the first
few excited states. Clearly good agreement is maintained
for these levels. Curiously there is a gap in the Geel
data in that there is apparently not an MT=56 file cor-
responding to the sixth excited state. Figs. 9 compare
the seventh through the eleventh excited state cross sec-
tions. Here the impressive agreement between the Geel
data and ENDF breaks down.
In an e↵ort to diagnose the source of the large disagree-

ment, we queried the ENSDF database [8]. The sixth
excited state of 56Fe has E6 = 3.0762 MeV, J⇧ = 3�

and has an unknown lifetime. It was not included in the
ENDF evaluation and it was not measured in the Geel
data. It is then reasonable to assume that the MT in-
dexing in the Geel data should be shifted down by one
unit starting with MT=57. Fig. 10 shows what happens
when we do this shift. Overall, the agreement between
the Geel data and ENDF is now quite impressive.

VI. SMOOTHING THE GEEL INELASTIC
SCATTERING DATA

We now turn to producing smoothed versions of the
inelastic cross section data. This is problematic because
of the presence of a threshold (see the carton in Fig. 11).
In the figure, the solid line is meant to represent the
actual cross section near threshold. Were we to average
this, two things would happen:

• Above but very close to threshold, the low energy
Lorenzian (or Gaussian) tail would be averaged
with zero, lowering the average cross section need-
lessly.

• Below but very close to threshold, the high en-
ergy Lorenzian (or Gaussian) tail would be aver-
aged with the non-zero above threshold cross sec-
tion, leading to a non-zero and unphysical cross
section below threshold.

This is illustrated in the dotted line in Fig. 11. A similar
problem exists at the end of the Geel datasets as the
smoothing will attempt to average the cross section with
the o↵-the-end-of-the-table cross section.
This is not a problem in Hauser-Feshbach theory since

only OMP things are averaged (in this case, the absorp-
tion cross section and transmission coe�cients). The
transmission coe�cients go to zero at E = 0, but are
shifted in argument up to the threshold of a reaction to
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Averaging cross section data so we can fit it
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Make average versions of 56Fe(n,tot), 56Fe(n,el), 56Fe(n, �) and 56Fe(n, n0) cross sections, with
some notion of uncertainty estimates.

I. INTRODUCTION

The 56Fe cross section we are interested in have a lot of
fluctuations. We would like to fit the average of the cross
section with cross sections calculated within EMPIRE
[1].

EMPIRE, being a Hauser-Feshbach theory based nu-
clear reaction code, essentially requires cross sections to
be smoothed using a Lorentzian profile. Indeed, most
textbooks describing Hauser-Feshbach theory derive it
using such a smoothing profile [2]:

L(E,E

0) =
1

⇡

I

(E0 � E)2 + I

2
. (1)

With this, functions which are analytic in the upper half
of the complex E-plane can be averaged with a little bit
of complex analysis:

hf(E)i =
Z 1

�1
dE

0
L(E,E

0)f(E0)

= f(E + iI) (2)

Here, we will explore various smoothing profiles and
demonstrate their practical interchangeability and we
will compute the smoothed 56Fe cross sections, with un-
certainties.

We plan to fit EMPIRE to these cross sections in the
fast region only (say above 500 keV), but use only the
part of the EMPIRE calculations above the resolved res-
onance region. We may also use the angular distributions
from EMPIRE through the resonance region provided
they behave themselves.

⇤
dbrown@bnl.gov

II. SPECTRUM WEIGHTING

Given a weighting spectrum �(E), we intend to average
a cross section as follows

h�i =
Z E

max

E
min

dE �(E)�(E) (3)

In this note, weighting spectrum is really a smoothing
profile of some sort. We assume the weighting spectrum
is normalized over the integration region defined here so

Z E
max

E
min

dE �(E) = 1 (4)

To compute the uncertainty, we resort to the basis
function expansion of the covariance as follows:

�2
�(E,E

0) =
X

ij

�2
�ijBi(E)Bj(E

0) (5)

In the ENDF format, all covariances are assumed to be
grouped in energy so the basis functions are simple win-
dow functions:

Bi(E) =

⇢
1 Ei  E  Ei+1

0 otherwise
(6)

This basis is an orthogonal basis, with the inverse being
B

�1
i (E) = (Ei+1 � Ei)�1

Bi(E).
With this, the uncertainty of the average cross section

is

� h�i =
rZ

dEdE

0
�(E)�(E0)�2

�(E,E

0)

=
qP

ij �
2
�ij hBii hBji (7)

In general, the covariance between two di↵erent weight-
ing spectra (e.g. the smoothing function evaluated at
too di↵erent energies) can also be computed, but as it
can not be currently used in the fitting in Sam’s code,
we won’t compute it here.



Turns out smoothed cross section rather 
insensitive to smoothing profile except 
near discontinuities
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FIG. 2. Comparison of the e↵ects of various smoothing profiles on the elastic cross section. In all cases, the intrinsic smoothing
scale I is set to 200 keV.

FIG. 3. Comparison of the e↵ects of various smoothing profiles on the total cross section. In all cases, the intrinsic smoothing
scale I is set to 200 keV.

VIII. SMOOTHING ANGULAR
DISTRIBUTIONS

It is recognized that the angular distributions of both
the elastic and first few inelastic cross sections have a

large impact on neutron leakage. In the CIELO starter
ENDF file, the resonances are given in the LRF=7 for-
mat, so they contain enough information to reconstruct
the entire neutron angular distributions for MT=2 and
51.

56Fe(n,tot)



Leal’s RRR included MT=51 (n,n1’);  
we have to deal with threshold 
discontinuity

48

DR
AF
T

12

FIG. 14. ENDF file resonance region for MT=51, smoothed a bunch of di↵erent ways.
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FIG. 15. Results of smoothing the (n,el) angular distribu-
tion from the CIELO starter file using a Gaussian smoothing
profile with I = 100 keV.
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FIG. 1. Comparison of the e↵ects of various smoothing profiles. In all cases, the intrinsic smoothing scale I is set to 200 keV.
Note that both smoothing profiles are non-local in that they have large tails. This accounts for the slow relaxation to the
average cross section in the region 800 keV to 2 MeV.

ensure that the correct threshold behavior is given. In
this way, they are both smoothed correctly and are zero
at threshold. Starting from Geel data or from the ENDF
file itself, we do not have this luxury.

To combat this problem, we will not smooth the
threshold cross sections within the vicinity of the thresh-
old, as denoted by the exclusion zone in Fig. 11. To
determine the smoothed cross section near the thresh-
old, we resort to physical reasoning and common sense.
In Ref. [3], Satchler argues that the near threshold cross
section for inelastic scattering should be proportional to
the outgoing neutron velocity. Therefore, we expect

�(E) / (E � Eth)
1/2 (8)

So, as a practical solution, we will match the constant of
proportionality in Eq. (8) to the smoothed cross section
at the upper energy cut o↵ of the exclusion zone. In this
way, we will have a smooth cross section down to the
threshold. We also have an estimate of the uncertainty
in the constant of proportionality from the smoothing
procedure itself.

We choose the energy cut o↵ to be at least 2I from
the threshold (or other dangerous feature, like the end
of the dataset). There is a mathematical motivation for
this choice. Namely, inserting energies E = E

0 + nI into
a Lorenzian centered at E0, we find:

L(E = E

0 + nI,E

0) =
1

⇡

I

(E0 + nI � E

0)2 + I

2
(9)

=
1

⇡I

2(n2 + 1)
(10)

so for n = 2, the height of the Lorenzian has dropped by
a factor of 5. Going at least 3I from features means the
Lorenzian would be down by a factor of 10, but the Geel
data doesn’t span a large enough energy range to make
this practical. See Fig. 12 for a sample of results using
Lorenztian smoothing on these threshold reactions. We
note that for higher levels, the energy window of usable
experimental data is shrinking so the Lorentzian tails are
being averaged with zeros, lowering the entire curve. This
is especially noticeable with the I=200 keV cause as it
has the longest tails.

Gaussians are maybe a better choice since their tails
are not as long as a Lorenzian. Indeed, with a Gaus-
sian, moving 2I out means the smoothing function has
dropped to 13% of the peak value and moving to 2.5I,
the function drops to 5% of the peak. Fig. ?? shows the
results with Gaussian smoothing and these results seem
quite acceptable.

VII. SMOOTHING THE ENDF MT=51
INELASTIC SCATTERING DATA

So that we have a set of data directly from the ENDF
file resonance region for MT=51, I averaged it too.

Near threshold, cross section 
should be proportional to outgoing 
neutron velocity (Satchler, 
Introduction to Nuclear Reactions 
(1980)), so 



We can use the same procedure on the 
Geel data to smooth out the 
experimentally resolved fluctuations in 
the other inelastic levels
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56Fe(n,n2’) (MT=52)



We can use the same procedure on the 
Geel data to smooth out the 
experimentally resolved fluctuations in 
the other inelastic levels
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56Fe(n,n3’) (MT=53)



Fit of (n,tot) below 3 MeV
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! We simulate Kawano’s l-dependent OMP with non-l 
dependent factor 

! This way we preserve CN to Shape Elastic ratio and 
angular distributions



Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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JEFF-3.1 <=> ENDF/B-VII.1  35 keV - 3.4 MeV
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Resonance structure in 56Fe around 80 keV
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We smoothed the angular distribution 
one can reconstruct from RRR also
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Along the way we have:

! solved mystery in the ENSDF/RIPL  56Fe level scheme 
! discovered extraordinary sensitive monitor of level densities 
! rediscovered Toshihiko’s finding that OM for 56Fe fails below 3 

MeV  
! got a suspicion that angular distributions  might be the key to the 

good iron evaluation   
! realized the importance of having clean, differential data based, 

evaluation for being able to perform future updates 
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New data since 1995  
(EFF-3.1 evaluation date)

! LANL (R. O. Nelson, M. Devlin, N. Fotiades, J. A. Becker, P. E. 
Garrett, W. Younes, D. Dashdorj, T. Ethvignot, T. Granier, AIP 
Conference Proceedings 819, 323 (2006); doi: 10.1063/1.2187879) 
• Found total inelastic (n,inel) by looking at main 847 keV line 

! Geel (A. Negret, C. Borcea, Ph. Dessagne, M. Kerveno, A. Olacel, A. 
J. M. Plompen, M. Stanoiu, Phys. Rev. C 90, 034602 (2014)) 
• Included (n,n1’) data in Leal’s RRR fit  
• Backed out cross section data for first 10 excited states using 

coincidence gammas 

! Other new data: 
• RPI: quasi-differential data, good for validation 
• Ohio U.: inelastic benchmarking, mentioned by Jing Qian already 
• U. Kentucky: natFe inelastic cross sections, still being analyzed
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This is all almost ready for fitting
! Cross sections from EFF-3.1 evaluation 
• (n,2n) 
• (n,el) (Fast region) 
• (n,tot) (Fast region) 
• (n,p) 
• (n,a) 

! Cross sections from CIELO RRR 
• (n,el) (RR region) 
• (n,g) (RR region) 
• (n,tot) (RR region) 

! Inelastic cross sections from Geel  
• MT=52-60 

! But… we still have mysteries to resolve

93



56Fe(n,inel)
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56Fe: 847 keV gamma-line
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57Fe(n,2n) correction
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Path forward

! Implement IRK-IPPE evaluation into the fit 
! Fully eliminate spooky level in 56Fe from the calculations 
! Decide on Geel-GEANIE controversy in inelastic >8 MeV 
! Compare angular distributions derived from the resonance 

parameters with those obtained from optical model and 
decide on representation 

! Perform fine tuning to differential data => ENDF/A 
! Validate new file 
! Perform adjustment to the integral data => ENDF/B ENDF/C 

Still a lot of work but ‘materials’ and ‘tools’ are ready!
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